
A comment on the presence of spurious states in finite basis approximations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 158001

(http://iopscience.iop.org/1751-8121/41/15/158001)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/15
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 158001 (2pp) doi:10.1088/1751-8113/41/15/158001

COMMENT

A comment on the presence of spurious states in finite
basis approximations

R C Andrew and H G Miller

Department of Physics, University of Pretoria, Pretoria 0002, South Africa

E-mail: hmiller@maple.up.ac.za

Received 4 January 2008
Published 2 April 2008
Online at stacks.iop.org/JPhysA/41/158001

Abstract
The genesis of spurious solutions in finite basis approximations to operators
which possess a continuum and a point spectrum is discussed and a simple
solution for identifying these solutions is suggested.

PACS number: 02.77.−c

Recently, Ackad and Horbatsch [1] have presented a nice numerical method for the solution
of the Dirac equation for the hydrogenic Coulomb problem using the Rayleigh–Ritz method
[2]. Using a mapped Fourier grid method, a matrix representation of the Dirac Hamiltonian is
constructed in a Fourier sine basis, which upon diagonalization yields reasonably numerically
accurate eigenvalues for a mesh size which is not exceptionally large. Relativistic sum rules [3]
provide a simple means of checking whether or not the number of basis states is adequate. As
with any attempt to construct a matrix representation of an operator which contains continuum
states, spurious states can occur and must be eliminated. Ackad and Horbatsch [1] have pointed
out that in certain cases they can be identified by looking at the numerical structure of the
large and small components of the corresponding eigenvector. A similar phenomenon occurs
in the mapped Fourier grid representation of the non-relativistic Schrödinger problem [4] in
which non-physical roots are observed at random locations. Again the potentials considered
support both bound and continuum states. The wavefunctions of these spurious states are
characterized by their unphysical oscillations and non-vanishing amplitude in the classically
forbidden regions. The authors point out that they have found no satisfactory mathematical
explanation for the occurrence of these spurious levels.

In this comment we wish to point out that the genesis of these spurious states can easily
be understood and that there is a simple way to identify them. Consider an operator, Ĥ , which
possesses a continuum (or continua) as well as a point spectrum. The subspace spanned by
its bound state eigenfunctions, HB, is by itself certainly not complete. As the composition
of this space is generally not known beforehand, a set of basis states which is complete and
spans a space, F , is chosen to construct a matrix representation of the operator, Ĥ , to be
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diagonalized. Mathematically this corresponds to projecting the operator Ĥ onto the space
F . Clearly the eigenpairs obtained from diagonalizing the projected operator, Ĥ P , need
not all be the same as those of the operator Ĥ . However, because the set of basis states is
complete, any state contained in HB can be expanded in terms of this set of basis states. Hence
HB may also be regarded as a subspace of F and the complete diagonalization of Ĥ P will
yield not only the exact eigenstates of Ĥ but additional spurious eigensolutions. Note these
spurious eigenfunctions are eigenfunctions of Ĥ P but not of Ĥ . Furthermore in this case the
Rayleigh–Ritz bounds discussed in the paper by Krauthauser and Hill [2] apply now to the
eigenstates of Ĥ P .

It is interesting to note that the same problem occurs in the Lanczos algorithm [5] when
it is applied to operators which possess a bound state spectrum as well as a continuum [6].
This is not surprising as the Lanczos algorithm can also be considered as an application of
the Rayleigh–Ritz method [7]. In this case an orthonormalized set of Krylov basis vectors is
used to construct iteratively a matrix representation of the operator which is then diagonalized.
Again spurious states can occur for precisely the same reasons given above. In this case
we have proposed identifying the exact bound states in the following manner [6]. After each
iteration, for each of the converging eigenpairs (elλ, | elλ〉),�lλ = ∣

∣e2
lλ−〈elλ|Ĥ 2| elλ〉

∣
∣ (where l

is the iteration number) is calculated and a determination is made as to whether � is converging
toward zero or not. For the exact bound states of Ĥ , � must be identically zero while the
other eigenstates of the projected operator should converge to some nonzero positive value.
This method has been successfully implemented to identify spurious states in non-relativistic
[6] as well as relativistic [8] eigenvalue problems. A similar procedure can be implemented
in any Rayleigh–Ritz application. One simply must check to see whether the eigensolutions
from the diagonalization of Ĥ P are also eigensolutions of Ĥ 2.
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